Entrer un problème...
Algèbre linéaire Exemples
[123401230001]⎡⎢⎣123401230001⎤⎥⎦
Étape 1
Write as an augmented matrix for Ax=0Ax=0.
[123400123000010]⎡⎢
⎢⎣123400123000010⎤⎥
⎥⎦
Étape 2
Étape 2.1
Perform the row operation R2=R2-3R3R2=R2−3R3 to make the entry at 2,42,4 a 00.
Étape 2.1.1
Perform the row operation R2=R2-3R3R2=R2−3R3 to make the entry at 2,42,4 a 00.
[123400-3⋅01-3⋅02-3⋅03-3⋅10-3⋅000010]⎡⎢
⎢⎣123400−3⋅01−3⋅02−3⋅03−3⋅10−3⋅000010⎤⎥
⎥⎦
Étape 2.1.2
Simplifiez R2R2.
[123400120000010]⎡⎢
⎢⎣123400120000010⎤⎥
⎥⎦
[123400120000010]⎡⎢
⎢⎣123400120000010⎤⎥
⎥⎦
Étape 2.2
Perform the row operation R1=R1-4R3R1=R1−4R3 to make the entry at 1,41,4 a 00.
Étape 2.2.1
Perform the row operation R1=R1-4R3R1=R1−4R3 to make the entry at 1,41,4 a 00.
[1-4⋅02-4⋅03-4⋅04-4⋅10-4⋅00120000010]⎡⎢
⎢⎣1−4⋅02−4⋅03−4⋅04−4⋅10−4⋅00120000010⎤⎥
⎥⎦
Étape 2.2.2
Simplifiez R1R1.
[123000120000010]⎡⎢
⎢⎣123000120000010⎤⎥
⎥⎦
[123000120000010]⎡⎢
⎢⎣123000120000010⎤⎥
⎥⎦
Étape 2.3
Perform the row operation R1=R1-2R2 to make the entry at 1,2 a 0.
Étape 2.3.1
Perform the row operation R1=R1-2R2 to make the entry at 1,2 a 0.
[1-2⋅02-2⋅13-2⋅20-2⋅00-2⋅00120000010]
Étape 2.3.2
Simplifiez R1.
[10-1000120000010]
[10-1000120000010]
[10-1000120000010]
Étape 3
Use the result matrix to declare the final solution to the system of equations.
x1-x3=0
x2+2x3=0
x4=0
Étape 4
Write a solution vector by solving in terms of the free variables in each row.
[x1x2x3x4]=[x3-2x3x30]
Étape 5
Write the solution as a linear combination of vectors.
[x1x2x3x4]=x3[1-210]
Étape 6
Write as a solution set.
{x3[1-210]|x3∈R}